Abstract

In medical research, diagnostic tests with continuous values are widely employed to attempt to distinguish between diseased and non-diseased subjects. The diagnostic accuracy of a test (or a biomarker) can be assessed by using the receiver operating characteristic (ROC) curve of the test. To summarize the ROC curve and primarily to determine an "optimal" threshold for test results to use in practice, several approaches may be considered, such as those based on the Youden index, on the so-called close-to-(0,1) point, on the concordance probability and on the symmetry point. In this paper, we focus on the symmetry point-based approach, that simultaneously controls the probabilities of the two types of correct classifications (healthy as healthy and diseased as diseased), and show how to get joint nonparametric confidence regions for the corresponding optimal cutpoint and the associated sensitivity (= specificity) value. Extensive simulation experiments are conducted to evaluate the finite sample performances of the proposed method. Real datasets are also used to illustrate itsapplication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.