Abstract

Cluster analysis is an unsupervised learning strategy that is exceptionally useful for identifying homogeneous subgroups of observations in data sets of unknown structure. However, it is challenging to determine if the identified clusters represent truly distinct subgroups rather than noise. Existing approaches for addressing this problem tend to define clusters based on distributional assumptions, ignore the inherent correlation structure in the data, or are not suited for high-dimension low-sample size (HDLSS) settings. In this paper, we propose a novel method to evaluate the significance of identified clusters by comparing the explained variation due to the clustering from the original data to that produced by clustering a unimodal reference distribution that preserves the covariance structure in the data. The reference distribution is generated using kernel density estimation, and thus, does not require that the data follow a particular distribution. By utilizing sparse covariance estimation, the method is adapted for the HDLSS setting. The approach can be used to test the null hypothesis that the data cannot be partitioned into clusters and to determine the optimal number of clusters. Simulation examples, theoretical evaluations, and applications to temporomandibular disorder research and cancer microarray data illustrate the utility of the proposedmethod.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.