Abstract
In this paper, we present a numerical solution for heat transfer in the flow of a non-Newtonian power law fluid immersed in a saturated porous medium over a nonisothermal stretching sheet in the presence of internal heat generation/absorption. Thermal conductivity is assumed to vary as a linear function of temperature. Similarity transformations are used to convert highly nonlinear partial differential equations into ordinary differential equations. The resulting coupled nonlinear ordinary differential equations are solved numerically by the efficient Keller box method for two different cases, namely, a surface with prescribed surface temperature and surface with prescribed wall heat flux. The important findings of our study are that the effect of the power law index is to decrease the horizontal velocity boundary layer thickness and thermal boundary layer thickness. The effect of the porous parameter is to reduce the horizontal boundary layer thickness and increase the thermal boundary layer thickness. © 2008 Begell House, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.