Abstract

Direct synthesis of graphene without metal catalysts on a dielectric substrate is a major goal in graphene-based electronics and is an increasingly popular nanotechnology alternative to metal oxide semiconductor technology. However, current methods for the synthesis of these graphenes have many limitations, including the use of metal catalyst. Herein, we report a facile approach to the direct synthesis of graphene sheets based on the self-assembled monolayers (SAMs) technique. The new method for metal catalyst-free direct synthesis of a graphene sheet is through a solution-processable, inexpensive, easy, and reproducible cross-linked polythiophene self-assembled monolayer (SAM) that is formed via the [4+2] π cycloaddition reaction of π-electron conjugated thiophene layer self-assembled on the dielectric silicon dioxide substrate. The bifunctional molecules were carefully designed to create an SAM via silanization of alkoxy silane groups on the SiO2 substrate, and at the other end, a thin cross-linked polythiophene layer via a [4+2] π-electron cycloaddition reaction of π-electron conjugated thiophene SAM. By heating the cross-linked polythiophene SAM up to 1000°C under a high vacuum, single-layered or few-layered graphene sheets were successfully prepared on the dielectric silicon oxide substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.