Abstract
We investigate both analytically and by numerical simulation the relaxation of an overdamped Brownian particle in a 1D multiwell potential. We show that the mean relaxation time from an injection point inside the well down to its bottom is dominated by statistically rare trajectories that sample the potential profile outside the well. As a consequence, also the hopping time between two degenerate wells can depend on the detailed multiwell structure of the entire potential. The nonlocal nature of the transitions between two states of a disordered landscape is important for the correct interpretation of the relaxation rates in complex chemical-physical systems, measured either through numerical simulations or experimental techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.