Abstract

AbstractIn this paper, the dynamics of multibody systems with closed kinematical chains of bodies is considered. The main focus is set on non‐linearity of the multibody equations with respect to the Lagrange multipliers. When closed chains are considered, loop cutting procedure is a solution to express the constraint equations associated with the loops. Dynamic equations of the multibody tree‐like structure are thus completed with the constraint forces via the Lagrange multipliers. In the considered case of railway vehicles, constraints arise from the contact between the rigid wheels and the rails. Corresponding contact forces applied to the wheels appears via the Lagrange multipliers λ and the tangent creep forces as well. Resulting differential‐algebraic equations can be transformed into an ODE system and then time‐integrated using the coordinate partitioning method [3], when the system is linear with respect to λ. This paper presents an algorithm allowing us to solve this system in case of nonlinearities with respect to λ, which is typical of wheel/rail contact force models. (© 2009 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.