Abstract

Global gyrokinetic particle simulations and nonlinear gyrokinetic theory indicate that electron temperature gradient (ETG) instability saturates via nonlinear toroidal coupling. In such nonlinear interactions, the wave energy at the unstable high toroidal-mode number domain cascades towards the more stable lower toroidal-mode number domain via scatterings off the driven low-mode number quasi-modes. During the saturation process, there is little zonal flow generation and the radial fluctuation envelopes maintain extended structures. The nonlinear coupling process depends critically on the toroidal geometry and, as such, represents a new paradigm for the spectral cascade of drift wave turbulence in toroidal systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.