Abstract

We present a technique for nonlinear system identification and model reduction using artificial neural networks (ANNs). The ANN is used to model plant input–output data, with the states of the model being represented by the outputs of an intermediate hidden layer of the ANN. Model reduction is achieved by applying a singular value decomposition (SVD)-based technique to the weight matrices of the ANN. The sequence of state values is used to convert the model to a form that is useful for state and parameter estimation. Examples of chemical systems (batch and continuous reactors and distillation columns) are presented to demonstrate the performance of the ANN-based system identification and model reduction technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.