Abstract

Nonlinear static analysis of piezoelectric plates has been carried out using nonlinear finite element method considering electro-mechanical coupling. The geometrical nonlinearity has been taken into account and electric potential is assumed to be quadratic across the plate thickness. The governing equations are obtained using potential energy and Hamilton’s principle that includes elastic and piezoelectric effects. The finite element model is derived based on constitutive equation of piezoelectric material accounting for coupling between elasticity and electric effect using higher order plate elements. Results are presented for piezoelectric plate under different mechanical boundary conditions. Numerical results for the plate are given in dimensionless graphical forms. Effects of boundary conditions on linear and nonlinear response of the plate are also studied. The numerical results obtained by the present model are in good agreement with the available solutions reported in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.