Abstract

Studies of the nonlinear stability of fluid/porous systems have been developed very recently. A two-domain modelling approach has been adopted in previous works, but was restricted to specific configurations. The extension to the more general case of a Navier–Stokes modelled fluid over a porous material was not achieved for the two-domain approach owing to the difficulties associated with handling the interfacial boundary conditions. This paper addresses this issue by adopting a one-domain approach, where the governing equations for both regions are combined into a unique set of equations that are valid for the entire domain. It is shown that the nonlinear stability bound, in the one-domain approach, is very sharp and hence excludes the possibility of subcritical instabilities. Moreover, the one-domain approach is compared with an equivalent two-domain approach, and excellent agreement is found between the two.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.