Abstract
The present paper is devoted to a study of nonlinear stability of discontinuous Galerkin methods for delay differential equations. Some concepts, such as global and analogously asymptotical stability are introduced. We derive that discontinuous Galerkin methods lead to global and analogously asymptotical stability for delay differential equations. And these nonlinear stability properties reveal to the reader the relation between the perturbations of the numerical solution and that of the initial value or the systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.