Abstract

Traditional kernel spectral density estimators are linear as a function of the sample autocovariance sequence. The purpose of this article is to propose and analyse two new spectral estimation methods that are based on the sample autocovariances in a nonlinear way. The rate of convergence of the new estimators is quantified, and practical issues such as bandwidth and/or threshold choice are addressed. The new estimators are also compared with traditional ones using flat‐top lag‐windows in a simulation experiment involving sparse time‐series models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.