Abstract
In this paper, the seismic response of concrete gravity dams is presented using the concept of Continuum Damage Mechanics (CDM) and adopting the hybrid Finite Element–Boundary Element technique (FE–BE). The finite element method is used for discretization of the near field and the boundary element method is employed to model the semi-infinite far field. Because of the non-linear nature of the discretizied equations of motion modified Newton–Raphson approach has been used at each time step to linearize them. Damage evolution based on tensile principal strain using mesh-dependent hardening modulus technique is adopted to ensure the mesh objectivity and to calculate the accumulated damage. The methodology employed is shown to be computationally efficient and consistent in its treatment of both damage growth and damage propagation in gravity dams. Other important features considered in the analysis are: (1) realistic damage modelling for concrete that allows isotropic as well as anisotropic damage state and exhibits stiffness recovery upon load reversals. (2) softening initiation and strain softening criteria for concrete, and (3) proper modelling of semi-infinite foundation using FE–BE method that allows to consider dam–foundation interaction analysis. As an application of the proposed formulation a gravity dam has been analysed and the results are compared with different foundation stiffnesses. The results of the analysis indicate the importance of including rock foundation in the seismic analysis of dams. Copyright © 1999 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.