Abstract

Thermal excitations on a germanium surface under simultaneous irradiation by two monochromatic optical beams, one strong and one weak, are predicted as functions of the angular separation and frequency difference between the beams, their relative polarization, their intensities, and pulse durations. Nonlinear optical reflection for Q-switched ruby laser pulses is then described. Weak reflected and diffracted beam intensities show tendencies in which the former is preferentially enhanced for a downshifted weak beam frequency, while the latter depends only on the shift magnitude. Both are suppressed for large shifts or large angular separations between input beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.