Abstract

The evaluation of distances as small as few nanometers using optical waves is a very challenging task that can pave the way for the development of new applications in biotechnology and nanotechnology. In this article, we propose a new measurement method based on the control of the nonlinear optical response of plasmonic nanostructures by means of Fano resonances. It is shown that Fano resonances resulting from the coupling between a bright mode and a dark mode at the fundamental wavelength enable unprecedented and direct manipulation of the nonlinear electromagnetic sources at the nanoscale. In the case of second harmonic generation from gold nanodolmens, the different nonlinear sources distributions induced by the different coupling regimes are clearly revealed in the far-field distribution. Hence, the configuration of the nanostructure can be accurately determined in 3-dimensions by recording the wave scattered at the second harmonic wavelength. Indeed, the conformation of the different elements building the system is encoded in the nonlinear far-field distribution, making second harmonic generation a promising tool for reading 3-dimension plasmonic nanorulers. Furthemore, it is shown that 3-dimension plasmonic nanorulers can be implemented with simpler geometries than in the linear regime while providing complete information on the structure conformation, including the top nanobar position and orientation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.