Abstract

AbstractElectro‐optic side‐chain polymers have been synthesized by the post‐functionalization of methacrylate isocyanate polymers with novel phenyl vinylene thiophene vinylene bridge (FTC) nonlinear optical chromophores. For this application, FTC‐based chromophores were modified in their electronic donor structure, exhibiting much larger molecular hyperpolarizabilities compared with the benchmark FTC. Of these new chromophores, absorption spectra, hyper‐Rayleigh scattering experiment, and thermal analysis were carried out to confirm availability as effective nonlinear optical units for electro‐optic side‐chain polymers. The electro‐optic coefficients (r33) of obtained polymers were investigated in the process of in situ poling by monitoring the temperature, current flow, poling field, and electro‐optic signal. Compared with the nonsubstituted analogue, benxyloxy modified FTC chromophore significantly achieved higher nonlinear optical property, exhibiting molecular hyperpolarizability at 1.9 μm of 4600 × 10−30 esu and an r33 value of 150 pm/V at the wavelength of 1.31 μm. Synthesized electro‐optic polymers showed high glass transition temperature (Tg), so that the temporal stability examination exhibited >78% of the electro‐optic intensity remaining at 85 °C over 500 h. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.