Abstract

We present a new algorithm capable of partitioning sets of objects by taking simultaneously into account their relational descriptions given by multiple dissimilarity matrices. The novelty of the algorithm is that it is based on a nonlinear aggregation criterion, weighted Tchebycheff distances, more appropriate than linear combinations (such as weighted averages) for the construction of compromise solutions. We obtain a hard partition of the set of objects, the prototype of each cluster and a weight vector that indicates the relevance of each matrix in each cluster. Since this is a clustering algorithm for relational data, it is compatible with any distance function used to measure the dissimilarity between objects. Results obtained in experiments with data sets (synthetic and real) show the usefulness of the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.