Abstract

This work presents the design procedure of a speed controller for a large, lean burn, natural gas engine in island mode operation. This is a disturbance rejection problem with a measured, large disturbance. The core element is a nonlinear model predictive control (NMPC) algorithm that serves as outer loop controller in a cascaded control structure and generates set-points for low level control loops. The NMPC relies on a control oriented model that includes the physics based equations, assumptions on underlying control loops and constraints given by the control requirements. It is shown how to design the running cost such that the stability of the NMPC without terminal cost and constraints can be guaranteed for the nominal system and for the perturbed system exposed to parametric uncertainties and un-modeled dynamics. The functionality of the control strategy is demonstrated in simulation and by experimental results derived at the engine-testbed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.