Abstract

This paper presents a nonlinear model predictive control algorithm for online motion planning and tracking of an omnidirectional autonomous robot. The formalism is based on a Hamiltonian minimization to optimize a control path as evaluated by a cost function. This minimization is constrained by a nonlinear plant model, which confines the solution space to those paths which are physically feasible. The cost function penalizes tracking error, control amplitude, and the presence in a potential field cast by moving obstacles and Boards. An experiment is presented demonstrating the successful navigation of a field of stationary obstacles. Simulations are presented demonstrating that the algorithm enables the robot to react dynamically to moving obstacles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.