Abstract
Linear model predictive control (LMPC) is well established as the industry standard for controlling constrained multivariable processes. A major limitation of LMPC is that plant behavior is described by linear dynamic models. As a result, LMPC is inadequate for highly nonlinear processes and moderately nonlinear processes which have large operating regimes. This shortcoming coupled with increasingly stringent demands on throughput and product quality has spurred the development of nonlinear model predictive control (NMPC). NMPC is conceptually similar to its linear counterpart except that nonlinear dynamic models are used for process prediction and optimization. The purpose of this paper is to provide an overview of current NMPC technology and applications, as well as to propose topics for future research and development. The review demonstrates that NMPC is well suited for controlling multivariable nonlinear processes with constraints, but several theoretical and practical issues must be resolved before widespread industrial acceptance is achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.