Abstract

AbstractIn response to solar wind disturbances, radiation belt (a few hundreds of keV to several MeV) electron fluxes can be depleted significantly over the entire equatorial pitch angle range. The frequently mentioned cyclotron resonant scattering is applicable only for electrons mirroring off the equator. Here we propose a new physical mechanism, nonlinear Landau resonance with oblique electromagnetic ion cyclotron (EMIC) waves, to effectively scatter the near equatorially mirroring electrons. Our test particle simulations show that the nonlinear Landau trapping can occur over a wide energy range and yield the net decrease in equatorial pitch angle Δαeq≈10° within several seconds. Our parametric studies further reveal that this nonlinear Landau‐trapping process is favored by a low plasma density, an intense wave field, a high wave frequency close to ion gyrofrequencies, and a large wave normal angle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.