Abstract
This paper investigates nonlinear gain-scheduling control approaches for a class of polynomial nonlinear systems, containing an output-dependent vector field with input saturation. Using the polytopic differential inclusion and norm-bounded differential inclusion (NDI) of saturation and dead-zone functions, the nonlinear plants are transformed into systems with measurable parameters. For the polytopic differential inclusion description, a quasi-linear parameter varying (quasi-LPV) output-feedback controller will be sought for saturation control. On the other hand, the NDI model leads to a nonlinear fractional transformation (NFT) output-feedback controller for saturated nonlinear systems. The quasi-LPV and NFT output-feedback control synthesis conditions are derived in the forms of output-dependent matrix inequalities. They can be reformulated as sum-of-squares (SOS) optimisations and solved efficiently using SOS programming. The proposed nonlinear gain-scheduling saturation control approaches will be demonstrated using the Van der Pol equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.