Abstract

The nonlinear forced vibration of infinitely long functionally graded cylindrical shells is studied using the Lagrangian theory and multiple scale method. The equivalent properties of functionally graded materials are described as a power-law distribution in the thickness direction. The energy approach is applied to derive the reduced low-dimensional nonlinear ordinary differential equations of motion. Using the multiple scale method, a special case is investigated when there is a 1:2 internal resonance between two modes and the excitation frequency is close to the higher natural frequency. The amplitude–frequency curves and the bifurcation behavior of the system are analyzed using numerical continuation method, and the path leading the system to chaos is revealed. The evolution of symmetry is depicted by both the perturbation method and the numerical Poincaré maps. The effect of power-law exponent on the amplitude response of the system is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.