Abstract
The present paper (Part II) is a sequel to the previous paper (Part I) [Paik JK, Seo JK. Nonlinear finite element method models for ultimate strength analysis of steel stiffened-plate structures under combined biaxial compression and lateral pressure actions—Part I: Plate elements. Thin-Walled Struct 2008, this issue, doi:10.1016/j.tws.2008.08.005.] on the application of nonlinear finite element methods for ultimate strength analysis of steel stiffened-plate structures under combined biaxial compression and lateral pressure actions. In contrast to Part I dealing with plate elements, the present paper (Part II) treats stiffened panels surrounded by strong support members such as longitudinal girders and transverse frames. In similar to Part I, some important factors of influence such as structural dimensions, initial imperfections, loading types and computational techniques in association with ultimate limit states are studied. Some useful insights in terms of nonlinear finite element method modeling are developed using ANSYS code together with the ALPS/ULSAP semi-analytical method, the latter being for the purpose of a comparison.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.