Abstract

Following widespread damage to bridge joints in the San Francisco region from the 1989 Loma Prieta earthquake, the necessity for establishing an alternative method for seismic design of bridge joints was identified. Recognizing that conventional joint design practice based directly on shear forces results in congested reinforcement details, which are difficult to implement in practice, a rational design procedure was sought through large-scale testing of bridge joint systems and subsequent finite element and strut-and-tie analyses. The finite element part of the study is presented in this paper, which focuses on (a) identification of compression force flow and thus the load path across the joint, (b) examination of an efficient joint force transfer model, and (c) influence of cap beam prestressing. Combining the experimental and analytical results, a joint design method has been established in which reduction of joint reinforcement was achieved by treating joint shear as part of the complete force transfer across the joint, rather than as an independent action. The proposed design approach has been validated in a laboratory test on a full-scale multiple-column bridge bent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.