Abstract

The idea that the nonlinear electromagnetic interaction, i. e., light propagation in vacuum, can be geometrized was developed by Novello et al. (2000) and Novello & Salim (2001). Since then a number of physical consequences for the dynamics of a variety of systems have been explored. In a recent paper Mosquera Cuesta & Salim (2003) presented the first astrophysical study where such nonlinear electrodynamics (NLEDs) effects were accounted for in the case of a highly magnetized neutron star or pulsar. In that paper the NLEDs was invoked {\it a l\`a} Euler-Heisenberg, which is an infinite series expansion of which only the first term was used for the analisys. The immediate consequence of that study was an overall modification of the space-time geometry around the pulsar, which is ``perceived'', in principle, only by light propagating out of the star. This translates into an significant change in the surface redshift, as inferred from absorption (emission) lines observed from a super magnetized pulsar. The result proves to be even more dramatic for the so-called magnetars, pulsars endowed with magnetic ($B$) fields higher then the Schafroth quantum electrodynamics critical $B$-field. Here we demonstrate that the same effect still appears if one calls for the NLEDs in the form of the one rigorously derived by Born & Infeld (1934) based on the special relativistic limit for the velocity of approaching of an elementary particle to a pointlike electron [From the mathematical point of view, the Born & Infeld (1934) NLEDs is described by an exact Lagrangean, whose dynamics has been successfully studied in a wide set of physical systems.].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.