Abstract

Abstract The paper contributes to the clarification of the mechanism of one-dimensional pulsating detonation wave propagation for the transition regime with two-scale pulsations. For this purpose, a novel numerical algorithm has been developed for the numerical investigation of the gaseous pulsating detonation wave using the two-stage model of kinetics of chemical reactions in the shock-attached frame. The influence of grid resolution, approximation order and the type of rear boundary conditions on the solution has been studied for four main regimes of detonation wave propagation for this model. Comparison of dynamics of pulsations with results of other authors has been carried out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.