Abstract

This paper concerns mathematical modeling of the processes of false bottom evolution taking into account water freezing in the opposite direction from the cooled boundary with the atmosphere. The model of the crystallization process is based on the two-phase zone theory complicated by the moving boundaries of phase transitions and turbulent flows of fluid in the ocean near the false bottom boundary. Analytical solutions of the nonlinear problem are found (the distributions of the temperature and the salinity, the proportion of the solid fraction, the laws of the motion of the boundaries between the phase transitions, and the heat fluxes) and a comparative analysis of the results with the field data observations is performed. It is shown that the heat flux caused by the growing false bottom makes a significant contribution to the heat exchange processes between the ocean and the atmosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.