Abstract

Weather represents the daily state of the atmosphere. It is usually considered as a chaotic nonlinear dynamical system. The objectives of the present study were (1) to investigate multifractal meteorological trends and rhythms at the Amazonian area of Ecuador and (2) to estimate some nonlinear invariants for describing the meteorological dynamics. Six meteorological variables were considered in the study. Datasets were collected on a daily basis from January 1st 2001 to January 1st 2005 (1,460 observations). Based on a new multifractal method, we found interesting fractal rhythms and trends of antipersistence patterns (Fractal Dimension >1.5). Nonlinear time series analyses rendered Lyapunov exponent spectra containing more than one positive Lyapunov exponent in some cases. This sort of hyperchaotic structures could explain, to some extent, larger fractal dimension values as the Kaplan–Yorke dimension was also in most cases larger than two. The maximum prediction time ranged from ξ = 1.69 days (approximately 41 h) for E/P ratio to ξ = 14.71 days for evaporation. Nonlinear dynamics analyses could be combined with multifractal studies for describing the time evolution of meteorological variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.