Abstract

The nonlinear dynamics of the neuro-musculo-skeletal system and the environment play central roles for the control of human bipedal locomotion. Our neuro-musculo-skeletal model demonstrates that walking movements emerge from a global entrainment between oscillatory activity of a neural system composed of neural oscillators and a musculo-skeletal system. The attractor dynamics are responsible for the stability of locomotion when the environment changes. By linking the self-organizing mechanism for the generation of movements to the optical flow information that indicates the relationship between a moving actor and the environment, visuo-motor coordination is achieved. Our model can also be used to simulate pathological gaits due to brain disorders. Finally, a model of the development of bipedal locomotion in infants demonstrates that independent walking is acquired through a mechanism of freezing and freeing degrees of freedom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.