Abstract

This paper examines the nonlinear dynamics of a translational functionally graded material (FGM) plate. The plate is composed of nickel and stainless steel, and its property is graded in the thickness direction that obeys a power-law distribution. By adopting the Kármán nonlinear geometrical relations, the equation of motion is derived from the D’Alembert’s principle by considering the dynamic equilibrium relationships for the out-of-plane vibration of the plate. The equation of motion is discretized by using the Galerkin method and thus a series of ordinary differential equations with mode-coupling terms are obtained. These ordinary differential equations are then solved by utilizing the method of harmonic balance. The analytical results are verified by the adaptive step-size fourth-order Runge–Kutta technique. The stability analysis of analytical solutions is also carried out by introducing small perturbation for steady state solutions. Both natural frequency and nonlinear frequency-amplitude characteristics are presented. In the translational FGM plate, strong nonlinear mode interaction phenomenon has been detected. The nonlinear frequency response shows intensive hardening-spring characteristics. Moreover, various system parameters such as power-law distribution, translating speed of the plate, in-plane tension force, damping coefficient and external excitation amplitude are selected as the controlled variables to present parametric study. Their effects on the nonlinear dynamical response of the translational FGM plate are highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.