Abstract

Scalar forces ``screened'' by the Vainshtein mechanism may hold the key to understanding the cosmological expansion of our Universe, while predicting new and exciting features in the interaction between massive bodies. Here we explore the dynamics of the Vainshtein screening mechanism, focusing on the decoupling limit of the DGP braneworld scenario and dRGT massive gravity. We show that there is a vast set of initial conditions whose evolution is well defined and which are driven to the static screening solutions of these theories. Screening solutions are stable and behave coherently under small fluctuations: they oscillate and eventually settle to an equilibrium configuration, the time scale for the oscillations and damping being dictated by the Vainshtein radius of the screening solutions. At very late times, a power-law decay ensues, in agreement with known analytical results. However, we also conjecture that physically interesting processes such as the gravitational collapse of compact stars may not possess a well-posed initial value problem. Finally, we construct solutions with nontrivial multipolar structure describing the screening field of deformed, asymmetric bodies and show that higher multipoles are screened more efficiently than the monopole component.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.