Abstract

In this study, a unified nonlinear dynamic buckling analysis for Euler–Bernoulli beam–columns subjected to constant loading rates is proposed with the incorporation of mercurial damping effects under thermal environment. Two generalized methods are developed which are competent to incorporate various beam geometries, material properties, boundary conditions, compression rates, and especially, the damping and thermal effects. The Galerkin–Force method is developed by implementing Galerkin method into force equilibrium equations. Then for solving differential equations, different buckled shape functions were introduced into force equilibrium equations in nonlinear dynamic buckling analysis. On the other hand, regarding the developed energy method, the governing partial differential equation for dynamic buckling of beams is also derived by meticulously implementing Hamilton’s principles into Lagrange’s equations. Consequently, the dynamic buckling analysis with damping effects under thermal environment can be adequately formulated as ordinary differential equations. The validity and accuracy of the results obtained by the two proposed methods are rigorously verified by the finite element method. Furthermore, comprehensive investigations on the structural dynamic buckling behavior in the presence of damping effects under thermal environment are conducted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.