Abstract

This paper comprehensively deals with the parametric effects of the joint clearance and friction coefficient on the dynamics of planar deployable structures consisting of scissor-like elements (SLEs). The dynamic model for scissor deployable structure is based on a comprehensive consideration of the symmetry and array characteristics of this mechanism and on a Lagrange method, which represents the motion equations. A modified nonlinear contact-force model is employed to evaluate the intrajoint contact force, and the incorporation of the friction effect between the inter-connecting bodies is included in this study. The total impact forces produced in the real mechanical joint are embedded into the dynamics and the differential equations of motion are solved numerically based on a set of initial conditions. The clearance size, angle velocity, and friction coefficient are analyzed and discussed separately. Using Poincaré map, the regular and irregular responses of the deployable mulitibody systems are observed. Next, a control scheme is evaluated to maintain a more stable behavior and continuous contact between the clearance joints. The controlled results are compared with those without control, concluding that some undesired effects caused by the clearance joints can be prevented or reduced, resulting in continuous contact at the clearance joint.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.