Abstract
The energy input and frequency shift of geodesic acoustic modes (GAMs) due to turbulence in tokamak edge plasmas are investigated in numerical two-fluid turbulence studies. Surprisingly, the turbulent GAM dispersion relation is qualitatively equivalent to the linear GAM dispersion but can have drastically enhanced group velocities. In up-down asymmetric geometry the energy input due to turbulent transport may favor the excitation of GAMs with one particular sign of the radial phase velocity relative to the magnetic drifts and may lead to pulsed GAM activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.