Abstract

A theoretical solution is developed for the interaction of second-order Stokes waves with a large vertical circular cylinder in water of finite depth. The solution is obtained in terms of the velocity potential such that any kinematic or dynamic quantity of interest may be derived, consistent to the second perturbation order. In this study, the second-order wave field around the cylinder is determined, showing the modification of the incident Stokes waves by wave-wave and wave-structure interactions, both in the reflection-dominated up-wave region and in the diffraction-dominated down-wave region. The theory is then compared to experimental data for wave runup and rundown amplitudes on the cylinder as well as for wave crest and trough envelopes in the up-wave and down-wave regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.