Abstract

Ortega and Espinosa (1993) presented a globally stable controller for torque regulation of a complete induction motor model with partial state feedback, i.e., no assumption of flux measurement. The result was established under the assumptions that both the desired and load torques are constant, that the former does not exceed certain bounds which depend on the systems natural damping, and that the motor parameters are known. In the present contributions the authors extend these results in several directions. First, by "adding mechanical damping" to the closed-loop system the authors relax the upper bound condition on the desired torque. Second, the authors use a new controller structure that allows them to treat the case of time-varying desired torque. Finally, a new estimator is proposed to handle time-varying (linearly parameterized) unknown loads.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.