Abstract
This paper presents a nonlinear control design method for robust stabilization and robust performance of linear differential inclusions (LDIs). A recently introduced non-quadratic Lyapunov function, the convex hull of quadratics, will be used for the construction of nonlinear state feedback laws. Design objectives include stabilization with maximal convergence rate, disturbance rejection with minimal reachable set and least L 2 gain. Conditions for stabilization and performances are derived in terms of bilinear matrix inequalities (BMIs), which cover the existing linear matrix inequality (LMI) conditions as special cases. Numerical examples demonstrate the advantages of using nonlinear feedback control over linear feedback control for LDIs. It is also observed through numerical computation that nonlinear control strategies help to reduce control effort substantially.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.