Abstract
We develop filter algorithms for nonlinear stochastic differential equations with discrete time measurements (continuous-discrete state space model). The apriori density (time update) is computed by Monte Carlo simulations of the Fokker-Planck equation using kernel density estimators and measurement updates are obtained by using the extended Kalman filter (EKF) updates. For small sampling intervals, a discretized continuous sampling approach (DCS) is used. A third algorithm utilizes a functional (path) integral representation of the transition density (functional integral filter FIF). The kernel density filter (KDF), DCS, and FIF are compared with the EKF and the Gaussian sum filter by using a Ginzburg-Landau-equation and a stochastic volatility model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.