Abstract

This paper presents centrifuge data from model footing tests on dry sand, where a high resolution optical displacement measurement technique was employed to record subsurface soil displacements beneath the centerline of loaded strip footings. These measurements allow derivation of vertical strain profiles, which are then used to estimate operational soil stiffness values. The stiffness values, which were assessed assuming a dependence on cone penetration test tip resistance and initial vertical effective stress level, are shown to degrade rapidly with increasing strain level. Despite such nonlinearity, the experimental strain data can be represented using an updated form of the well known Schmertmann strain influence profile. Settlements calculated using this profile are shown to be in agreement with subsurface settlements when appropriate soil stiffness values are employed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.