Abstract

Finite difference beam propagation method is an accurate numerical procedure, used here to explore the switching dynamics of a nonlinear coherent directional coupler. The coupling lengths derived from this simulation are compared with coupled mode theories. BPM results for the critical power follow the trend of the coupled mode theories, but it lies in between two coupled mode theories. Coupled mode theory is sensitive to numerical approximations whereas BPM results practically do not depend on grid size and longitudinal step size. Effect of coupling-region-width and core-width variations on critical power and coupling length is studied using BPM to look at the aspects of optical power-switch design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.