Abstract

Nonlinear characteristics of fused silica, solid-core photonic crystal fibers (PCFs) with a square array of air holes are studied numerically. We present a novel design that emphasizes the difference in air hole diameters in the photonic cladding. These PCFs have the advantages of flat dispersion, high nonlinearity, and low attenuation. Based on simulation results, three optimal structures, denoted #F1, #F2, and #F3, having anomalous and all-normal dispersions in the near-infrared range are selected to investigate characteristic properties at the pump wavelength. Such PCFs open up many possibilities for nonlinear optical applications, especially supercontinuum generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.