Abstract

This paper presents an analytical method to investigate the effects of symmetric and asymmetric elastic supports on the nonlinear equilibria and buckling responses of shallow arches. It is found that arches with symmetric elastic supports can bifurcate into secondary paths with high-order symmetric modes. When a small asymmetry exists in the elastic supports, the equilibria of the arch may abruptly split and lead to the occurrence of remote unconnected equilibria. Such unconnected equilibria can be obtained experimentally or numerically using typical path following controls only with prior knowledge of location of these paths. A small asymmetry in the elastic supports may also make a secondary branch shrink into points connecting surrounding equilibria, resulting in the appearance of more limit points. The analytical solutions are also derived to directly calculate critical loads. We find that the magnitude of the stiffness of symmetric elastic supports has no influence on limits loads and bifurcation loads at branching into secondary paths with symmetric configurations, but greatly affect the bifurcation loads of secondary paths with asymmetric configurations. All critical loads are very sensitive to the degree of asymmetry in the elastic supports. The asymmetry in the supports reduces the top values of all pairs of critical loads compared to the case of symmetric elastic supports. The results obtained from the analytical derivations are confirmed using finite element analysis (FEA).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.