Abstract

This paper presents an investigation on the nonlinear bending of simply supported, functionally graded nanocomposite plates reinforced by single-walled carbon nanotubes (SWCNTs) subjected to a transverse uniform or sinusoidal load in thermal environments. The material properties of SWCNTs are assumed to be temperature-dependent and are obtained from molecular dynamics simulations. The material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTCRs) are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The governing equations are based on a higher order shear deformation plate theory with a von Karman-type of kinematic nonlinearity and include thermal effects. A two step perturbation technique is employed to determine the load-deflection and load-bending moment curves. The numerical illustrations concern the nonlinear bending response of FG-CNTRC plates under different sets of thermal environmental conditions, from which results for uniformly distributed CNTRC plates are obtained as comparators. The results show that the load-bending moment curves of the plate can be significantly increased as a result of a functionally graded reinforcement. They also confirm that the characteristics of nonlinear bending are significantly influenced by temperature rise, the character of in-plane boundary conditions, the transverse shear deformation, the plate aspect ratio as well as the nanotube volume fraction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.