Abstract
Abstract Aiming at the nonlinear sloshing in the LNG tank, a three-dimensional elastic model is established to investigate the fluid structure interaction effect. For the transient flow and the tank motion, the direct coupling method is employed to calculate the interaction between the sloshing and the bulkhead. The finite element software ADINA is adopted to do the computation. The sloshing natural frequency is verified with the results of the theoretical formula. Different wall thicknesses, filling ratios and external excitations are considered and the structure natural frequency, surface elevation and sloshing pressure are obtained. The results of the elastic case are further compared with the rigid results and the nonlinear characteristics are extracted to see the hydro-elastic effect. The sloshing natural frequencies are agreed well with the theoretical results. Due to the influence of the fluid structure interaction, the couple frequencies are obviously less than those of the empty tank. With the increase of the wall thickness, the frequencies of the empty tank and the couple frequencies all increase gradually. For the surface elevation, the thinner the bulkhead thickness is, the more the high frequency component is. The free surface is relatively flat and stable in the rigid tank but tend to be chaotic for the elastic one. Due to the fluid structure interaction, the sloshing pressure of the elastic case presents obvious high-frequency fluctuation and the sloshing pressure in the elastic tank is smaller than that in the rigid tank. This model clearly shows the valuable ability to solve the three dimensional sloshing in the elastic tank.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.