Abstract
ABSTRACTIn this paper, the design and implementation of two different, nonlinear and vector, closed-loop control methods for flying-capacitor power converters are proposed and evaluated. Specific focus has been given to the decoupling problem, the influence of the balancing compensator on the output voltage reference tracking controller. In the first method, the coupling between the internal voltage balancing dynamics and the external load dynamics is solved in the pulse-width modulator by means of vector modulation. In the second method, input–output decoupling is achieved by feedback linearization to resolve the nonlinearity caused by switching the flying-capacitor voltage state. For both methods, classical linear control theory is applied in the design of a feedback control law. The theoretic evaluation is supported by simulation and experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.