Abstract

AbstractNonlinear adaptive sliding mode control (NASMC) has the capability to adequately control a system whose parameters are unknown to the controller designer. Conventional model-based controllers require a mathematical dynamic model of the system with known parameters. These system parameters are normally determined by extensive system identification experiments, which are expensive and time-consuming to perform. A NASMC approach that does not require known system parameters is proposed. Using NASMC, a controller designer can skip the expensive and time-consuming system parameter identification and fast-forward to the control implementation. In addition, once a controller is derived for a quadcopter using NASMC, the same controller will work on any quadcopter with the same equations of motion but different dynamic parameters. The formulation of the NASMC is presented for general second-order and fourth-order systems. Then, as an implementation example, the application of the general NASMC approach is demonstrated by applying it to a quadcopter unmanned aerial vehicle in simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.