Abstract

Nonlinear hopping absorption of ultrasound and electromagnetic waves in amorphous and doped semiconductors is considered. It is shown that even at low amplitudes of the electric (or acoustic) field the nonlinear corrections to the relaxational absorption appear anomalously large. The physical reason for such behavior is that the nonlinear contribution is dominated by a small group of close impurity pairs having one electron per pair. Since the group is small, it is strongly influenced by the field. An external magnetic field strongly influences the absorption by changing the overlap between the pair components' wave functions. It is important that the influence is substantially different for the linear and nonlinear contributions. This property provides an additional tool to extract nonlinear effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.