Abstract
Nonisothermal crystallization kinetics and melting behavior of bimodal-medium-density- polyethylene (BMDPE) and the blends of BMDPE/LDPE were studied using differential scanning calorimetry (DSC) at various scanning rates. The Avrami analysis modified by Jeziorny and a method developed by Mo were employed to describe the nonisothermal crystallization process of BMDPE. The BMDPE DSC data were analyzed by the theory of Ozawa. Kinetic parameters such as the Avrami exponent ( n), the kinetic crystallization rate constant ( Z c), the peak temperatures ( T p) and the half-time of crystallization ( t 1/2) etc. were determined at various scanning rates. The appearance of double melting peaks and the double crystallization peaks in the heating and cooling DSC curves of BMDPE/LDPE blends indicated that the BMDPE and LDPE could crystallize respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.