Abstract

To obtain a high step-up gain with high efficiency in nonisolated applications, a high step-up technique based on isolated-type converters is introduced in this paper. By stacking the secondary side of an isolated converter in addition to its primary side, a high step-up conversion ratio and a distributed voltage stress can be achieved. Moreover, a careful choice of an isolated converter can provide zero-voltage switching, continuous input current, and reduced reverse recovery on diodes. Based on a conventional voltage-doubler-rectifier boost-integrated half-bridge converter, the derived converter satisfies all these features, which make it suitable for high step-up applications. The operational principle and characteristics of the proposed converter are presented, and verified experimentally with a 135-W, 24-V input, 250-V output prototype converter for a LED driver.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.